
ARTICLE IN PRESS

Journal of Biomechanics 42 (2009) 634–641
Contents lists available at ScienceDirect
journal homepage: www.elsevier.com/locate/jbiomech

Journal of Biomechanics
0021-92

doi:10.1

� Corr

E-m
www.JBiomech.com
Rapid identification of elastic modulus of the interface tissue on dental
implants surfaces using reduced-basis method and a neural network
Khin Zaw a,�, G.R. Liu a,b, B. Deng a, K.B.C. Tan c

a Centre for Advanced Computations in Engineering Science, Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1,

Singapore 117576, Singapore
b Singapore-MIT Alliance (SMA), E4-04-10, 4 Engineering Drive 3, Singapore 17576, Singapore
c Department of Restorative Dentistry, Faculty of Dentistry, National university of Singapore, 5 Lower Kent Ridge Road, Singapore 119074, Singapore
a r t i c l e i n f o

Article history:
Accepted 5 December 2008
This paper proposes a rapid inverse analysis approach based on the reduced-basis method (RBM) and

neural network (NN) to identify the ‘‘unknown’’ elastic modulus (Young’s modulus) of the interfacial
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tissue between a dental implant and the surrounding bones. In the present RBM–NN approach, a RBM

model is first built to compute displacement responses of dental implant-bone structures subjected to a

harmonic loading for a set of ‘‘assumed’’ Young’s moduli. The RBM model is then used to train a NN

model that is used for actual inverse analysis in real-time. Actual experimental measurements of

displacement responses are fed into the trained NN model to inversely determine the ‘‘true’’ elastic

modulus of the interfacial tissue. As an example, a physical model of dental implant-bone structure is

built and inverse analysis is conducted to verify the present RBM–NN approach. Based on numerical

simulation and actual experiments, it is confirmed that the identified results are very accurate, reliable,

and the computational saving is very significant. The present RBM–NN approach is found robust and

efficient for inverse material characterizations in noninvasive and/or nondestructive evaluations.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Osseointegration is the structural and functional connection
between the living bone and dental implant surface (Bränemark
et al., 1985; Friberg et al., 1991; Brunski, 1992). In the osseointe-
gration process, conditions of implant-bone interfacial tissues
influence significantly adaptive bone remodelling (Cowin, 1986)
and material properties of interfacial tissues determine
biomechanical responses and stability of implant-bone structures.

Several research works have been carried out to predict bone
properties of implant-bone structure with in-vitro or in-vivo
studies (Cowin, 2001). Examples are traditional mechanical
testing, nanoindentation, imaging procedures or ultrasonic tech-
niques (Cowin, 2001). A technique of resonance frequency
analysis (RFA) (Meredith et al., 1996; Sennerby et al., 2005) has
also been developed to detect implant stability. However, no
precise method has been developed to determine noninvasively
the material properties of implant-bone interfacial tissues after
dental implant operations due to technical difficulties. It is,
however, invaluable to develop a systematic and efficient inverse
approach to identify material properties of interfacial tissues. In
the area of nondestructive evaluation (NDE), two pieces of very
ll rights reserved.

65 67791459.
important techniques have been made available. One is advanced
inverse analysis techniques (Liu and Han, 2003) that allow
systematic means to identify system parameters from properly
designed measurable outputs. Another one is the so-called
real-time computation methods that allow rapid computation of
the outputs for a set of assumed inputs. These two pieces of
techniques are applicable to identify material properties of dental
implant systems.

Currently, the finite element method (FEM) is widely employed
to evaluate the behavior of an implant-bone structure (Geng et al.,
2001; Deng et al., 2008a b). A FEM analysis is, however, very
time-consuming because of the complexity of implant-bone
structures demanding a large amount of elements. In an inverse
analysis, thousands and even hundreds of thousands of such
‘‘forward’’ analyses may be required. Thus, the total CPU-time for
an inverse analysis can be unacceptably long. A fast forward
solver is therefore critical in order to avoid very long CPU-time in
inverse analyses.

A reduced-basis method (RBM) (http://augustine.mit.edu) is a
fast computational technique which can solve forward problems
rapidly with desired accuracy. RBMs with error estimation
were employed to solve different kinds of partial differential
equations. The detailed procedures for reduced-basis method for
parametrized parabolic partial differential equations can be found
in the work of Nguyen (2005); Grepl and Patera (2005).
Applications of the reduced-basis method and its rigorous error

http://augustine.mit.edu
www.sciencedirect.com/science/journal/jbiomech
www.elsevier.com/locate/jbiomech
dx.doi.org/10.1016/j.jbiomech.2008.12.001
mailto:g0402948@nus.edu.sg
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Fig. 1. Diagram of a dental implant-bone structure with four regions.
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estimation can be found in Veroy and Patera (2005), Rozza and
Veroy (2007) for Navier–Stokes equation, in Patera and Rønquist
(2007) for Boltzmann equation and in Huynh and Patera (2006)
for stress intensity factor analysis. Recently, Liu et al. (2008a)
developed a SGP_RBM method, for elasticity problems, based on a
smoothed Galerkin projection (Liu, 2008), which can provide an
upper bound to the exact solution while the original reduced-basis
method provides a lower bound to the exact solution. The
computational efficiency of such a RBM is found significantly
higher compared to that of the FEM, and hence has been applied
to inverse analyses of complicated engineering systems to reduce
computational cost (Liu et al., 2005).

In the NDE for material and structural systems, inverse
searching methodologies (Liu and Han, 2003) including direct
search algorithm, gradient-base algorithm, genetic algorithms
(GAs) and the neural network (NN), are commonly adopted.
Applications of the GAs in inverse analyses can be found in work
of Han et al. (2002) and Liu et al. (2002a, 2008b). In additions, the
NN has found its applications in inverse problems of elastic wave
propagation (Sribar, 1994), material characterizations (Huber and
Tsakmakis, 1999) of functionally graded material (FGM) (Han and
Liu, 2003; Han et al., 2003; Liu et al., 2001a, b, 2002b), material
characterizations of implant-bone structure (Deng et al., 2004,
2008c), and optimal design problems (Sumpter and Noid, 1996).
From these earlier studies, it is noted that the NN possesses
unique computing features for identification of structural para-
meters which are non-linearly related to dynamic responses of the
structure in a complicated manner. A RBM–NN approach in which
a RBM model is developed as a ‘‘teacher’’ to train a NN is proposed
in order to make use of the high computational efficiency of the
RBM and the efficiency of the NN in performing inverse analyses.

A 3D FEM model is firstly constructed for a dental implant-
bone system, and a fast RBM model is developed. The RBM model
is then used to generate the displacement responses of the dental
implant-bone structure to train a NN model. The trained NN
model is next applied to inversely identify elastic moduli of
interfacial tissues in the dental implant system by feeding with
experimental measurements of the actual physical model of the
dental implant system.
2. Construction of RBM model

2.1. Problem statement

A dental implant-bone problem is considered, and a sectional
view of the problem is displayed in Fig. 1. The dental implant-bone
system consists of four regions of the outermost cortical bone O1

the cancellous bone O2 the region of interfacial tissue O3 and the
aluminium rod of dental implant O4:O ¼ [i ¼ 1

4 Oi Material proper-
ties of each region are listed in Table 1. A harmonic force of
angular frequency o is applied to the aluminium rod, and
Dirichilet boundary condition is specified in GD as shown in Fig. 1.

The purpose of our work is to identify inversely the elastic
Young’s modulus E of the interfacial tissue between the surface of
aluminium rod and the cancellous bone from ‘‘measured’’
displacement responses of the dental bone structure to excitation
forces of different frequency o. Our analysis procedure consists of
two parts: forward analysis and inverse analysis. The forward
analysis determines the response of the system to a set of input of
system parameter for which we need to build a RBM model. The
inverse analysis determines the Young’s modulus E from a given
measurement of response of the dental system when it is excited.
In the forward analysis, input parameters m for our forward
analyses are defined by E and the frequency o : m ¼ ðE;oÞ 2 D
whereD ¼ ½1:0� 109;4:5� 109

�Pa� ½500;3500�Hz � RP¼2:Based
on the standare weakform of elasticity, for a given m 2 D; the exact

solution of the exact problem satisfies (see, e.g., Grepl et al., 2007;
Nguyen, 2005)

aðueðmÞ; u;mÞ ¼ f ðu;mÞ; 8u 2 S, (1)

where S is a proper Hilbert space and the output of interest is
determined as

seðmÞ ¼ ‘ðueðmÞÞ, (2)

where se(m) is the exact output, ue(m) is the exact displacement, a(,)
is bilinear form and ‘ is linear functional.

The bilinear form a(,) is now transformed into the parametric
bilinear form as (Prud’homme et al., 2002)

aðw; u;mÞ ¼
XQ

q¼1

Yq
ðmÞaqðw; uÞ, (3)

where aq(w, u) is m-independent bilinear form and Yq(m) are the
coefficient for affine function. This parametric bilinear form is
crucial in formulating the reduced-basis method.

2.1.1. Experimental setting

A block of bovine rib of a mature specimen, obtained
commercially from a butcher, is used as a physical model for the
edentulous human mandible. The experiment procedure strictly
abided with the National Advisory Committee for Laboratory
Animal Research Guidelines and the General Laboratory Safety
Procedure of National University of Singapore.

A 4�13 mm implant socket is prepared using drills according
to the actual surgery protocol suggested by the manufacturer.
To simulate the changes in stiffness of interfacial tissue during the
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Table 1
Material properties of dental implant-bone structure.

O ¼ [i ¼ 1
4 Oi Young modulus: E (Pa) Poisson Ratio: n Density: r (g/mm3)

Cortical Bone 2.3162�1010 0.371 1.8601�10�3

Cancellous Bone 8.2345�108 0.3136 7.1195�10�4

Implant–bone interface (resin) E (variable) 0.3155 1.055�10�3

Aluminum rod 7.05�1010 0.35 2.78�10�3

Fig. 2. Experimental setting for implant stability measurement.
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osseointegration process, the drilled hole is filled with self-curing
resin. Instead of using an actual implant, an aluminium rod
(SmartPegTM, Osstell AB, Sweden) is inserted in the resin. A RFA
device (Osstell MentorTM, Osstell AB, Sweden, www.osstell.com)
is used to measure vibration responses of the structure as shown
in Fig. 2. The aluminium rod is excited by an electromagnetic
pulse from the measurement probe.
X
Z

Fig. 3. (a) Overall 3-D FEM model of a dental implant-bone structure and (b)

sectional view of the interface area.

2.1.2. Finite element approximation

Since it is impossible to obtain the exact solution ue(m) given
in Eq. (1), the FEM solution ũðmÞ, in a discretized space S̃ of very
large dimension @, is often used in place of ue. Based on the
FEM theory, ũ-ue when S̃! S as @-N in a proper fashion.
A three-dimensional geometry and a 3D FEM model simulating
our experimental physical model are then created. The interfaces
between the cortical and cancellous bone, interfacial tissue and
the bones, interfacial tissue and aluminium rod are assumed to be
perfectly bonded. Ten-node tetrahedral elements are used in our
FEM model with a total degree of freedom @ ¼ 72,465 as shown in
Fig. 3. For a given parameter m ¼ ðE;oÞ 2 D; the FEM seeks the
solution ũ that satisfies

aðũðmÞ; u;mÞ ¼ f ðu;mÞ; 8u 2 S̃, (4)

where a(ũðmÞ,u,m) is a parametric bilinear form and f(u,m) is a linear
functional. The associated output of interest is defined as

s̃ðmÞ ¼ ‘ðũðmÞÞ, (5)

where ‘ is a linear functional. The output s̃ðmÞ is the displacement
component in the direction at a position where harmonic
force is applied as illustrated in Fig. 3. Therefore, responses of
displacement components in that direction are sensitive to the
changes of E, which is very important for our inverse analyses.
2.2. Reduced-basis method

Since a very fine FEM model is required for ũ-ue, it is very
expensive to obtain computationally. Therefore, the RBM is
chosen to improve the computational efficiency. A reduced-basis
sample set in the parameter space D, PN ¼ fm1 2 D; . . . ;
mN 2Dg;where m 2 D � Rp is introduced at the start of the RBM
procedure, and the reduced-basis space is defined as W̃N ¼

span ffi
� ũðmiÞ;1pipNg; where ũðmiÞ is the FEM solutions for a

given miAPN. For any m 2 D; the RBM approximation ũNðmÞ satisfies

aðũNðmÞ; u;mÞ ¼ f ðu;mÞ; 8u 2 W̃N , (6)

where a(ũNðmÞ,u,m) is the parametric bilinear form. The corre-
sponding reduced-basis output of interest can be obtained by

s̃NðmÞ ¼ ‘ðũNðmÞÞ. (7)

In solving the above equations, the RBM procedure consists of
two stages: m-independent offline and m-dependent online
stages (Prud’homme et al., 2002). In the offline stage, the N times
of @-dimension FEM analyses are required to create W̃N : Thus, it is
very expensive but it only requires to be done once. In the online
stage, the reduced-basis solutions are evaluated very efficiently as

http://www.osstell.com
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Fig. 5. Comparison between the asymptotic error and the exact output error for

mtest�1 ¼ (2.05�109 Pa, 2500 Hz).
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it requires only O(N3) operations as N5@, where N and @ are the
dimension of the RBM model and the FEM model, respectively.

2.2.1. Reduced-basis sample construction

Following the procedure given by Liu et al. (2008a, b), the
reduced-basis sample set PN is now created using asymptotic error
estimation and greedy algorithm. Firstly, a sample set SG

� D is
introduced. Reduced-basis sample sets PN ¼ {m1ASG} and
PM ¼ {m1ASG,m2ASG} are next created, where M ¼ 2N and PNCPM.
We set the associated RB spaces W̃N � W̃M and the desired
minimum error tolerance etol. The asymptotic error is determined
as

Ds
N;MðmÞ ¼

js̃MðmÞ � s̃NðmÞj
js̃MðmÞj

, (8)

where s̃N and s̃M are the outputs of W̃N and W̃M . According to the
fast convergence of RBM, we anticipate ũM-ũ and s̃M-s̃. The
exact error between s̃N and s̃ is now defined as

Ds
N;exactðmÞ ¼

js̃ðmÞ � s̃NðmÞj
js̃ðmÞj

. (9)

Another parameter set Stest including ntest samples is randomly
created in D. The averaged asymptotic error and exact error are
also defined over Stest � D,

Ds
N;M;avg ¼

Pntest

i¼1

Ds
N;Mðmi

test 2 StestÞ

ntest
and

Ds
N;exact;avg ¼

Pntest

i¼1

Ds
N;exactðmi

test 2 StestÞ

ntest
. (10)

Note that the exact error and the averaged errors are used to
verify the accuracy of our asymptotic error estimate. Using the
asymptotic error, the greedy algorithm is carried out until it found
maxm2SGDs

N;MðmÞp�tol to obtain PN ¼ fmi � Dg; i ¼ 1; . . . ; N.

2.3. Numerical results

A sample set SG is created in a regular 31�31 grid pattern over
D, and the desired minimum error tolerance is set as etol ¼ 10�4.
The greedy adaptive procedure is carried out to create an optimal
RB set PN at an optimal Nmax ¼ 6. Sample point distribution of PN

is illustrated in Fig. 4.
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Fig. 4. Distribution of reduced-basis sample set for RBM model obtained by the

adaptive sampling procedure using the greedy algorithm.
Another parameter set Stest including a total of ntest ¼ 500
samples is randomly created. For two parameters: mtest�1 ¼

(2.05�109 Pa, 2500 Hz) and mtest�2 ¼ (1.7�109 Pa, 1800 Hz),
asymptotic errors and exact errors are evaluated and compared
as a function of N as shown in Figs. 5 and 6. The averaged
asymptotic and averaged exact errors over the entire Stest are also
compared and plotted in Fig. 7. The numerical results suggest that
our asymptotic error is in good agreements with the exact error,
and the convergence rate of the reduced-basis method is very fast
for an N5@.

Additionally, the maximum error difference e ¼ |DN,M
s(mmax)�

DN,exact
s(mmax)|, and the affectivity Z ¼ (DN,M

s(mmax)/DN,exact
s(mmax))

at mmaxAStest are computed at Nmax ¼ 6. We obtain e ¼ 3.8817�
10�10 and Z ¼ 0.999977 which is indeed very close to one. These
results confirm that the asymptotic error is very effective, easy to
implement, and it has the property of close-to-unity effectivity.

Computation time for a RBM forward solver (tRBM(online)),
CPU-time for a FEM forward solver (tFEM), and the CPU-time
saving factor a ¼ tFEM/tRBM(online) are also listed in Table 2. It is
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Fig. 6. Comparison between the asymptotic error and the exact output error for

mtest�2 ¼ (1.7�109 Pa, 1800 Hz).
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Table 2
Comparison of CPU-time for a FEM and a RBM forward analysis.

N tFEM tRBM(online) a ¼ tFEM/tRBM(online)

6 53.3614 (s) 8.0493�10�5 (s) 6.6293�105

Note: Test on a PC of Intels, Pentium(R) D, CPU 3.4 GHz, 2GB Ram.
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recognized that the RBM is very efficient for solving forward
problems. From the numerical results, it is likely that the
reliability and efficiency of our RBM model is promising. Our
RBM model is now ready to be utilized as an efficient forward
solver in inverse analysis.
3. Inverse procedure

We next establish an inverse procedure using our RBM model
together with a neural network model to identify rapidly the
elastic modulus E of interfacial tissue in our implanted bone
structure.
3.1. Briefing on neural network

A NN model is built by using an artificial set of nodes called
neurons arranged by several layers including input layer, one or
more hidden layers and output layer (see, e.g., Liu and Han, 2003).
The diagram of a NN model with two hidden layers is shown in
Fig. 8, in which the lines between nodes indicate the information
flows from input-layer nodes to hidden-layer nodes and from
hidden-layer nodes to output-layer nodes.

In a NN, inputs are selected based on the knowledge of
sensitivity analysis, and fed into the input layer. Input-layer
neurons send their inputs to hidden-layer nodes without any
modification. Arriving at hidden-layer neurons, the values from
input-layer neurons are modified as shown in Fig. 9 by multi-
plying interconnection weights. Before leaving the neurons, the
resulting weighted values are summed together producing a
single-combined value which is then fed into a nonlinear
activation function called ‘sigmoid function’ and an output is
produced. Outputs from the hidden-layer neurons are then passed
on to output-layer neurons. Again, output-layer neurons modify
these values as the same way in the hidden layers, and produce
reasonable outputs of the NN. Note that the NN model is trained
with a modified back-propagation learning algorithm (see, e.g., Liu
and Han, 2003) in terms of determining and adjusting inter-
connection weights. In this work, a NN model is built including an
input layer, two hidden layers and an output layer. The neuron
numbers of the four layers are given as 4, 16, 8 and 1, respectively.

3.2. Numerical analysis

3.2.1. Comparison of RBM outputs and experimental measurements

We should examine our RBM results and experimental results
before the application of neural network. Using the RFA device,
experiments are made and measurements are recorded when the
self-curing resin is completely solidified. Measurements are then
compared with our RBM results and the results of the full FEM
model in term of frequency response within the frequency range
of [800,3500] Hz. As shown in Fig. 10, the normalized results
obtained using our RBM model are in very good agreements with
that of the experimental measurements.

3.2.2. Inputs of NN model

In a NN, it is necessary to determine inputs which are
significantly influenced Young’s modulus E of interfacial tissues.
Hence, effects of displacement responses, at the position where
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Table 3
Determination of Young’s modulus of resin using the RBM–NN and experimental

measurements.

Original Young’s Modulus Eactual ¼ 2.94�109 (Pa)

Search range 750%

Neural network Identified results Error

2.8639�109 (Pa) �2.5884%
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harmonic force is applied (see Fig. 3), are analyzed in D ¼
½1:0� 109;4:5� 109

�Pa� ½500;3500�Hz � RP¼2 over which our
RBM model is constructed. Effects on displacement responses
with respect to E of interfacial tissues and o are plotted in Fig. 11.
It is shown that the response is quite sensitive to E and very
sensitive to o within the range of o ¼ [2500 Hz, 3500 Hz]. Hence,
displacement responses at four o: o1 ¼ 3051.3 Hz, o2 ¼ 3173.3
Hz, o3 ¼ 3295.4 Hz, and o4 ¼ 3417.5 Hz are selected as inputs of
our NN mode. The NN model is then trained using a set of training
samples and their corresponding displacement responses at oi,
i ¼ 1,y, 4, which are generated by our RBM model.
3.2.3. Training of NN model

A set of training samples which covers all the possible values of
E should be firstly defined to construct a reliable NN model. The
orthogonal array (OA) method (e.g., Besterfield et al., 1995) has
been adopted to generate a training sample set. In this work, the
search range within 750% off the ‘‘true’’ parameter Etrue is used,
and ten training samples of E are determined by dividing evenly
within the search range, excluding Etrue. Each training sample is
input into our RBM model in order to generate corresponding
displacement responses. The NN model is then trained using the
training sample set and corresponding displacement responses
obtained using the RBM model. The trained NN is then used to
nondestructively identify Etrue by feeding ‘‘measured’’ displace-
ment responses.
3.2.4. Simulated and experimental measurements

To verify our RBM–NN procedure, both experimental ‘‘mea-
sured’’ displacements and simulated ‘‘measured’’ displacements
are used as input to the NN model. For simulated measurements,
an ‘‘artificial’’ Gauss noise with mean 0 and deviation dstd is added
to our RBM displacement responses (see, e.g., Han et al., 2003),
where

dstd ¼ c �
1

ninput

Xninput

i¼1

s̃ðEtrue;oiÞ

 !2
2
4

3
5

0:5

, (11)

where s̃(Etrue,oi), i ¼ 1,y, 4, are the FEM displacement responses,
ninput is the number of inputs for the NN model, and c is the value
of noise contamination lever. In this work, c is set at 0.05. It means
that simulated measurements are contaminated with 5% noise to
use in inverse analyses.

In the NN, the inputs, the training data, and outputs are usually
normalized in the range 0.1–0.9. The normalization is performed
in the following references (Deng et al., 2008c; Liu and Han,
2003).
3.2.5. Applications of NN and results

To examine the stability of the RBM–NN approach, inverse
analyses are now performed using the trained NN model. In-vitro
experimental measurements at the actual Young’s modulus Eactual

and oi, i ¼ 1,y, 4 are input into the NN model, and the required
output is inversely identified. The identified E of interfacial tissue
is given in Table 3. Two additional cases of inverse analyses are
also conducted in which the noise-free and 5% noise-contami-
nated-simulated measurements are used. Tables 4 and 5 give
estimated elastic moduli for two ‘‘true’’ elastic moduli of Etrue�1

and Etrue�2. The RBM–NN estimate results with maximum errors
of less than 1% for noise-free case, and less that 5% for both 5%
noise-contaminated cases and in-vitro experiment case. The
results interpret that our inverse procedure is very stable and
reliable within the search range of 750% off Etrue. This search
range is sufficient in practical applications.

To validate the efficiency of the RBM–NN approach, total
forward solver calls for a RBM–NN inverse analysis are also given
in Table 6; total CPU time is then recorded and provided in Table 7.
It is found that CPU time for a NN model using the RBM solver is
significantly faster than that of using the FEM solver. Therefore,
the proposed RBM–NN approach drastically cuts down computa-
tional time and cost.
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Table 4
Determination of Young’s modulus of resin using the RBM–NN and simulated measurements with 0% and 5% noise contamination for Etrue�1.

Original Young’s modulus Etrue�1 ¼1.5�109 (Pa)

Search range 750%

Neural network Noise free Noise added (5%)

Identified results Error Identified results Error

1.4910�109 (Pa) 0.6% 1.4252�109 (Pa) 4.9867%

Table 5
Determination of Young’s modulus of resin using the RBM–NN and simulated measurements with 0% and 5% noise contamination for Etrue�2.

Original Young’s modulus Etrue�2 ¼ 2.0�109 (Pa)

Search range 750%

Neural network Noise free Noise added (5%)

Identified results Error Identified Results Error

1.9960�109 (Pa) 0.2% 2.0988�109 (Pa) �4.94%

Table 6
Total number of forward analyses required in a RBM–NN inverse analysis.

Number of training samples Number of RBM calls in each training sample Total RBM calls in a NN model

10 4 m ¼ 40

Table 7
Comparison of computational time for a NN model using FEM and RBM as forward solvers.

Total RBM calls for a NN model CPU time for each forward solver Total computational time

m ¼ 40 tFEM 53.3614 (s) m� tFEM 35.5743 (min)

tRBM(online) 8.0493�10�5 (s) m� tRBM(online) 3.2197�10�3 (s)
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4. Conclusion

In this paper, a rapid inverse procedure (RBM–NN) is
established consisting of four main stages: constructing a fast
RBM forward solver, choosing inputs for the NN model, training
the NN model and determining the elastic modulus. The elastic
moduli of interfacial tissues in the dental implant-bone structure
are successfully identified by feeding experimental measurements
and/or simulated measurements through the trained NN model.
The inversely identified results of the RBM–NN procedure are very
accurate for all the experiment case, noise-free cases and noise-
contaminated cases. The results of our example support to
conclude that the computational efficiency is increased due to
the use of the RBM, and inversely identified results are stable and
reliable due to a novel information processing feature of the NN
techniques, which is able to model non-linear relation between
structural parameter and non-static responses of complex dental
implant structures.
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